
Welcome baaaaack to CS439H!
Wake me up when September ends

Stress

● 439H is not an easy class
○ Lots of new material
○ Unfamiliar programming environments
○ Fast, often relentless pace

● Struggling in this course is normal
○ There will be times you won’t know the answer or solution
○ This is expected - we want everyone to succeed, but the only way we can help is if you ask for it

● If you find yourself overwhelmed or spending more time on this class than you
think you should be, please reach out to Dr. Gheith or the TAs

○ We can help out as far as the class goes
○ We can provide other resources if we are not able to help

Mental health resources available at UT

https://cmhc.utexas.edu

Quiz everybody say WAWAWAWAWA

fs->read_all(
“feedback.txt”,
n,
buffer

);

How was the quiz?

A. easy
B. mostly fine
C. mostly fine, but not enough time
D. too hard, but finished mostly in

time
E. too hard and not enough time
F. too hard regardless of time

P5

fs->read_all(
“feedback.txt”,
n,
buffer

);

How is p5 going?

A. thatʼs a thing?
B. Cloned the project.
C. Looked through the starter code.
D. Started planning/writing code
E. Done with at least one part of the

project
F. Done with the whole project but

still failing a couple test cases
G. Any% p5 Speedrun glitched

ELF?

● Executable and Linkable Format
● Binary file that represents something you can run (i.e. a program)

○ Analogous to exe on Windows or dmg on Mac

● Two main parts: header and program

ELF?

● How to run a program?
a. Read the program from the filesystem
b. Load the program into memory (where?)
c. Jump to the entry point of the program (how?)

https://en.wikipedia.o
rg/wiki/Executable_a
nd_Linkable_Format

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

More ELF!

● Relocatable ELFs
a. Sometimes we want our ELFs to be loadable at different addresses but still work the same

■ e.g. position independent executables, shared libraries
b. Less vulnerable to attacks/breaches (why?)
c. Dynamic Libraries!

■ Code sharing (less memory usage!), easy to update
■ Addresses are determined at runtime, so we can load

multiple in different spots (think libc)

“User Mode”

● What’s the difference between a kernel and a user?
● Why do we need user mode?
● User programs - could be anything…

○ Imagine a malicious usermode test case, your kernel should be
able to defend against it

○ So far, tests have been in kernel mode, but now you write
kernelMain yourself

● We put protections around potentially dangerous things
like messing with the filesystem

● But user programs still need to do things like read files?

Syscalls

● Used to ask the kernel for restricted tasks
● Eax → eax register in x86
● Corresponds to the type of sys call
● Parameter 1 is stored in userEsp[1], parameter 2 is userEsp[2], etc etc

Syscalls (register packing)

This is for Linux, not our OS!
use as an example, not a reference

exec(l)

- int execl(const char* pathname, const char* arg,…, (char*)NULL)
- Switches to different executable
- Never returns

With this example we are passing in 6 arguments:
- path - /sbin/shell
- arg1 - shell
- arg2 - a
- arg3 - b
- arg4 - c
- arg5 - null

Path will tell us where the elf file to load is

Argc should be 4

Argv should be a pointer to an array containing
the other arguments

exec(l) - The layout of arguments when CALLED

nullptr

…

char* argv[1]

char* argv[0]

char* path

return address for execl

...

esp

esp + 4

esp + 8

exec(l) - How to set up parameters on the NEW stack
"a\0"

"shell\0"

…

nullptr

char* argv[1]

char* argv[0]

…

char** argv

int argc = 2

...

esp

esp + 4

Remember - The "top" of the stack is the lowest address in the
stack
We can start with userEsp=kConfig.memsize as the top of the
stack
For each argument we push on, we subtract from the esp.

Make sure to keep arguments 4 byte aligned by the end.

DON’T FORGET NULL TERMINATORS!!!

conf.memSize
execl("/sbin/shell", "shell", "a", nullptr);

exec(l) - cont

- After setting up the Kernel
Stack to mimic the new process
we need to:

- Load in the desired file and
entry point

- To fully transform into a new
process we call switch to user.

- What should entry be?
- Comes from loading the elf

file
- What should be the user stack?

- The top of the stack that
we altered from the
previous slide

exit

● void exit(int rc);
○ Ends the process with exit code rc.
○ Also, in this project, shuts down the whole system (obviously not true for real systems)

write

● ssize_t write(int fd, void* buf, size_t nbyte);
○ Attempts to write nbyte bytes of data starting at the pointer buf into the file descriptor fd
○ If successful, returns the number of bytes written

■ Not guaranteed to be equal to nbyte
■ Must be at least 1 if successful (guarantee some progress)

○ We only support writing to standard output
■ stdout is represented by fd=1 by default

Error behavio(u)r

● User programs can be invalid
○ what should we do?
○ how should we guard against malicious user programs?
○ what if user programs try to access kernel?

p5 structure

● kernel.cc
○ The starting code that runs right before you launch your very first user process
○ `kernelMain` should execute the ELF file /sbin/init and not return

■ Called right after `init.cc` finishes setting up

● sys.h/sys.cc
○ Kernel handlers for system calls

● elf.h/elf.cc
○ ELF loader for an ELF file given a Node
○ You should reject invalid ELFs or non-ELF files

● None of this is publicly visible to the test case - you can feel free to mix things
up as you please

○ You can add/remove functions that you want (except kernelMain, which has to be the main
entry point of your kernel)

○ But if you do really crazy things that we can’t understand, we can’t help

p5 structure

● Test cases look different, again
○ (This is a report question, so it is your job to figure out how the test system works) :D

Questions?

*** Don't panic

*** oooo$$$$$$$$$$$$oooo
*** oo$$$$$$$$$$$$$$$$$$$$$$$$o

*** oo$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o o$ $$ o$
*** o $ oo o$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o $$ $$ $$o$
*** oo $ $ "$ o$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$o $$$o$$o$
*** "$$$$$$o$ o$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$o $$$$$$$$
*** $$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$
*** $$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$$$$$$ """$$$
*** "$$$""""$$$ "$$$

*** $$$ o$$ "$$$o
*** o$$" $$$ $$$o

*** $$$ $$$" "$$$$$$ooooo$$$$o
*** o$$$oooo$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ o$$$$$$$$$$$$$$$$$

*** $$$$$$$$"$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$""""""""
*** """" $$$$ "$$$$$$$$$$$$$$$$$$$$$$$$$$$$" o$$$
*** "$$$o """$$$$$$$$$$$$$$$$$$"$$" $$$
*** $$$o "$$""$$$$$$"""" o$$$
*** $$$$o o$$$"
*** "$$$$o o$$$$$$o"$$$$o o$$$$
*** "$$$$$oo ""$$$$o$$$$$o o$$$$""
*** ""$$$$$oooo "$$$o$$$$$$$$$"""

*** ""$$$$$$$oo $$$$$$$$$$
*** """"$$$$$$$$$$$
*** $$$$$$$$$$$$
*** $$$$$$$$$$"

*** "$$$""
